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Sufficiency Conditions for a Commonly Used 
Downstream Boundary Condition on Stream Function 

Consider the numerical calculation of a boundary layer over a flat plate in planar 
incompressible flow, using the full Navier-Stokes equations in the stream function- 
vorticity form and a regular, rectangular mesh. The geometry and notation are 
indicated in Fig. 1. This problem is representative of many numerical fluid- 
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dynamics problems in which the analytical boundary conditions should be applied 
at an infinite distance from the region of interest, but in which the computational 
boundary conditions must be applied at the limits of the computational mesh.l 

We are concerned with the commonly used [l-3] technique of determining the 
downstream boundary condition on the stream function # by setting &/6x = 0 
(where 6/8x is the usual centered difference analogue of 2/2x) near the downstream 
boundary B4. There is no particular physical justification for this boundary con- 
dition. It is simply the least restrictive method found by numerical experimentation 
which does not lead to obvious drifting or to more catastrophic failure of the 
computations. It is clear that, if this condition is sufficient to provide a unique 
solution, then the computation will yield a valid approximation to the physical 
flow, provided that the boundary B4 is far enough from the region of interest. Just 
how far is “far enough” obviously depends on the particular problem, and cannot 
be answered in general. 

1 We do not use the words “analytical” and “computational” with any suggestion of “exact” 
and “approximate.” A mature view of physics demands that both the analytical and the com- 
putational approaches be recognized as approximate. 
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Since 4 is related to the velocity components u and v by S#jSx = -v and 
S#/Sy = U, the linear extrapolation 

w,j> = .v(~ - LA - w - U) (1) 
thus sets a2#/6x2 = -&/6x = 0 at (Z - 1,j). (We may alternately consider the 
computational mesh to end with B4 located at Z - 1, and the points at Z to be 
“fictitious” points defined for the convenience of using regular interior point 
differencing for # at Z - 1.) The extrapolation is performed at every iterative sweep 
in the solution of the discretized Poisson equation, 

62*/6x2 f s2*/sy2 = (I (2) 

The vorticity 5 is separately determined at interior points during each iterative 
sweep in the solution of the vorticity transport equation. The question is, does this 
technique (1) of linear extrapolation provide a sufficient boundary condition to 
determine a unique solution in Eq. (2)? 

We consider Dirichlet boundary conditions along Bl with #(i, 1) = 0, and 
along B3, where #(l,j) = q(j), some specified inflow function. Along the upper 
boundary B2, three types of boundary conditions are considered. The first, a 
Dirichlet condition, 

$w, J) = w, J) (3) 

makes B2 a streamline, analogous to a wind-tunnel wall. (The “wall” may be made 
an inviscid wall by proper treatment of the vorticity boundary condition [l-4]). 
The second condition 

#(i, J) = U x dy - #(i, J - 1) (4) 

approximates the Neumann condition a#/ay = U, with B2 located at j = J - 4. 
It physically corresponds to fixing the u-component of velocity at the “free stream” 
value U, while allowing the v-component to develop as part of the solution. The 
third condition is a plausible analogy of the downstream boundary condition, 

$(i, J) = 2#(i, J - 1) - #(i, J - 2). 

Consider a one-dimensional continuum version of the problem. 

(5) 

d2* (. d2+ 
&z= ’ with # = #(l) at B3, dx2 = 0 at B4. (6) 

It is obvious that the second boundary condition, corresponding to the linear 
extrapolation (l), is either contradictory to the differential equation if 5 # 0 at B4; 
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or, for 5 = 0 at B4, it merely restates the differential equation, i.e., it is no bound- 
ary condition. Thus (6) is not a complete problem and, in the finite-difference 
formulation, linear extrapolation fails to determine a unique solution, in the one- 
dimensional case. 

Now, consider the two-dimensional continuum problem. The condition 
32#/8x2 = 0 at B4 re d uces the Poisson equation to 

d2#/dy2 = 5 at B4. (7) 

For downstream conditions (3) or (4), this constitutes a two-point boundary-value 
problem with Dirichlet conditions at Bl, and Dirichlet (3) or Neumann (4) con- 
ditions at B2. Since these are known to provide a unique solution to (7), in both its 
continuum and finite-difference forms, it follows that # at B4 is uniquely deter- 
minable. Thus, the extrapolation procedure (1) would be analogous to a Dirichlet 
condition at B4, which is known to be sufficient. Note, however, that the upper 
boundary condition (5) is not sufficient to determine the problem. As in the one- 
dimensional case, it either contradicts the partial differential equation, if 5 # 0 
at B2, or simply restates the differential equation if < = 0 at B2. The sufficiency of 
the downstream boundary condition (1) is thus seen to depend on the conditions 
used at adjacent boundaries, indicating the significance of dimensionality to the 
problem. 

Note that the numerical problem using (1) and (5) might “converge” to within 
some specified tolerance, or that discretization could conceivably make the solu- 
tion unique, i.e., independent of the initial estimate. But that unique solution will 
depend on dx and dy and, as dx, dy ---) 0, the problem would become indeter- 
minate. 

The above arguments also suggest an efficient method of implementing the con- 
dition a2#/6x2 = 0 near the downstream boundary. Instead of applying it at 
i = Z - 1 by linear extrapolation, it may be applied at i = Z directly, reducing (2) 
to the discretized ordinary differential equation 62$/Sy2 = [, with the two-point 
boundary conditions of #(I, 1) = 0 at Bl and either (3) or (4) at B2. The value of 
((1, j) at B4 can be determined by several methods [4] for downstream computa- 
tional boundary conditions on vorticity.2 This ordinary difference equation can 
then be quickly solved noniteratively by the tridiagonal matrix algorithm [5] (see 
Appendix). With the downstream boundary values of $ so determined, one can 
proceed confidently with the solution of the partial difference Eq. (2) with Dirichlet 
conditions at B4. 

a Maltreatment of the 5 condition at B4 may cause the entire coupled 5, I,% computation (of 
which the above Poisson equation is merely a nested problem) to drift. In particular, linear 
extrapolation on 1 and 4 does not work [2]. But a zero gradient condition, l(Z,j) = ((1 - l,j), 
does work, and if vortex shedding does not occur, more accurate methods are available [4]. 
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The arguments and the above implementation are also extendible to dimensions 
greater than 2, although $ is no longer interpretable as a stream function. 

APPENDIX 

The general method of solution of a tridiagonal matrix may be found in [5]. For 
the particularly simple one-dimensional discretized Poisson equation used here, 

$wYj + 1) - NVJ) + WA - 1) = &I j) 
Ayz , 3 (A-1) 

the following noniterative shooting method is recommended. We have #(I, 1) = 0. 
Choose a provisional #‘(Z, 2) = 0. This is in error from the true value #(Z, 2) by 
the amount e, that is, 

QU 2) = #‘<I, 2) + e. 64.2) 

The remaining provisional values up through J are calculated in one sweep, 
starting atj = 3, by rearrangement of (A.]). 

+@,I + 1) = ~V,.OAY~ + W’V,j) - $(z,j - 1). 64.3) 

The unit error e may be shown to propagate as 

W,j> = #Vj) + (j - 1) e. (A.4) 

The unit error e is calculated from #‘(I, J) and the boundary condition at B2. If the 
Dirichlet condition (3) is used, 

e = QW, J) - #‘K J) 
J-l (A.5) 

and if the Neumann condition (4) is used, 

e = U x Ax - #‘(Z, J) + #‘(I, J - 1). 64.6) 

In the second sweep, the #‘(Z,j) are corrected to +(Z,j) by application of (A.4). 
Since (A.4) shows that the total error propagates linearly inj, there is no danger of 
computer round-off errors destroying the accuracy, as sometimes occurs with 
shooting methods. 
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